
RankAggreg, an R package for weighted rank

aggregation

Vasyl Pihur, Somnath Datta, and Susmita Datta

Department of Bioinformatics and Biostatistics, University of Louisville

http://vpihur.com/biostat

November 17, 2024

Contents

1 Introduction 2

2 Rank aggregation as an optimization problem 3

2.1 Spearman footrule distance 4

2.2 Kendall's tau distance . 5

3 Cross-Entropy Monte Carlo algorithm 6

4 Genetic algorithm 8

5 Examples of rank aggregation 9

5.1 Aggregation of clustering validation measures 9

5.2 Meta-analysis of microarray experiments 14

6 Discussion 18

Abstract

Rank aggregation plays an important role in our daily lives. Or-
dered lists are ubiquitous and we, consciously or unconsciously, at-
tempt to make sense of them. Unfortunately, for more complex prob-
lems, where either the number of lists is large or the lists are long
or both, the aggregation becomes more than a simple brainteaser, of-
ten requiring advanced computational techniques. The RankAggreg

package provides two methods for combining the ordered lists: the

1

http://vpihur.com/biostat

Cross-Entropy method and the Genetic Algorithm. Two examples of
rank aggregation are given in the manuscript, one a moderately large
problem in the context of clustering and the other relatively di�cult
one in the context of meta-analysis of microarray experiments.

1 Introduction

If you had to �ll out at least one survey in your life, there is a good chance

that you were asked to rank a collection of items in the order of preference

from the most favorable to the least favorable. Certain voting schemes, par-

ticularly the ones used in the past, required voters to rank all candidates,

making the �nal decision based on the obtained ordered lists. Many statisti-

cal and data mining procedures applied to large amounts of biological data

usually produce a list, ordered according to some importance measure, of

biologically meaningful entities such as, for example, a list of genes from a

microarray experiment indicative of the cancer status. These are just a few

examples that illustrate the abundance of ordered lists in all aspects of our

lives, both scienti�c and mundane.

Franklin D. Roosevelt once said that "there are as many opinions as there

are experts" and, thus, as many ordered lists on any given subject. Rank ag-

gregation techniques are indispensable tools for combining individual ordered

lists into a single "super"-list re�ective of the overall preference or impor-

tance within the population. The idea is quite simple and, ideally, everyone's

opinion should be accounted for. Di�erent rank aggregation schemes, how-

ever, di�er greatly in the underlying philosophy, as well as mathematical

complexity.

Two radically di�erent philosophies on rank aggregation exist. The �rst

one is based on the majoritarian principles and attempts to accommodate

the "majority" of individual preferences putting less or no weight on the

relatively infrequent ones. The �nal aggregate ranking is usually based on the

number of pairwise wins between items within individual lists. If item "A" is

ranked higher than item "B" more often than not, then item "A" should also

be ranked higher than item "B" in the overall list. The second philosophical

approach to rank aggregation seeks the consensus among individual ordered

lists and is usually based on some form of rank averaging. It is possible that

the two approaches will produce di�erent aggregated lists if applied to the

same problem.

Conceptually, rank aggregation techniques range from quite simple (based

on rank average or on a number of pairwise wins) to fairly complex and may

employ advanced computational methodologies to �nd a solution. Simple

2

solutions are not necessarily desirable as they usually rely on "ad hoc" prin-

ciples and lack any formal justi�cation. Mathematical rigor brings certain

satisfaction and "security" at the expense of increased complexity and in-

tensive computation.

In this paper, we present an R RankAggreg package which provides two

distinct algorithms for rank aggregation: the Cross-Entropy Monte Carlo

algorithm (CE) Rubinstein (1999); De Boer et al. (2005) and the Genetic

algorithm (GA) Goldenberg (1989). Both methods are available through

the main function RankAggreg. In addition, a brute force algorithm is also

provided through the BruteAggreg function which simply tries all possible

solutions and selects the one which is optimal. What is meant by "optimal"

and how to �nd the "optimal" solution will be the discussion of the next

sections.

2 Rank aggregation as an optimization problem

If we are to cast the rank aggregation in the framework of an optimization

problem, we �rst would need to de�ne our objective function. In this context,

we would like to �nd a "super"-list which would be as "close" as possible

to all individual ordered lists simultaneously. This is a natural requirement

and the objective function, at least in its most abstract form, is very simple

and intuitive

Φ(δ) =
m∑
i=1

wid(δ, Li),

where δ is a proposed ordered list of length k = |Li|, wi is the importance

weight associated with list Li, d is a distance function which will be discussed
in details below, and Li is the ith ordered list Pihur et al. (2007).

The idea is to �nd δ∗ which would minimize the total distance between

δ∗ and Li's

δ∗ = arg min
m∑
i=1

wid(δ, Li).

Selecting the appropriate distance function d which would measure the

"distance" between ordered lists is very important and two choices of a dis-

tance function are available: Spearman footrule distance and Kendall's tau

distance. The two distances usually produce slightly di�erent aggregated lists

which is mainly due to the di�erences in the two philosophical paradigms

3

discussed in the Introduction (1). Now let us take a closer look at how

"distances" between ordered lists are measured.

2.1 Spearman footrule distance

Before de�ning the two distance measures, let us introduce some necessary

notation. Let Mi(1), . . . ,Mi(k) be the scores associated with the ordered list
Li, where Mi(1) is the best (can be the largest or the smallest depending on

the context) score, Mi(2) is the second best, and so on. Let rLi(A) be the
rank of A in the list Li (1 means "best") if A is within the top k, and be

equal to k + 1, otherwise; rδ(A) is de�ned likewise.

The Spearman's footrule distance between Li and any ordered list δ can
be de�ned as

S(δ, Li) =
∑

t∈Li∪δ
|rδ(t)− rLi(t)|.

It is nothing more than the summation of the absolute di�erences between

the ranks of all unique elements from both ordered lists combined. It is

rather a very intuitive metric for comparing two ordered lists of arbitrary

length. The smaller the value of the metric, the more similar the lists. For

Spearman's footrule distance, the maximum value when comparing two top-

k lists is k(k + 1) which is attained when the two lists have no elements in

common.

The appeal of the Spearman footrule distance comes from its simplicity

and it is adequate in many situations when the only information available

about the individual lists is the rank order of their elements. In a case

when additional information which was used to rank the lists in the �rst

place is available, it would be bene�cial and prudent to incorporate this

information into our aggregation scheme Pihur et al. (2007). Even though

in soccer a win is a win, a win by 5 goals is more "convincing" than a

marginal victory secured by a penalty kick on the last minute of the game.

The qualitative di�erence in terms of ranks has an objective quantitative

di�erence underlying it. This is probably true in most cases.

Thus, we de�ne the Weighted Spearman's footrule distance between Li

and any ordered list δ which makes use of the quantitative information avail-
able in many cases. It is given by this weighted sum representation

WS(δ, Li) =
∑

t∈Li∪δ
|M(rδ(t))−M(rLi(t))| × |rδ(t)− rLi(t)|.

One can intuitively think ofWS(δ, Li) in terms of sum of penalties for moving

an arbitrary element of the list Li, t, from the position rδ(t) to another

4

position rLi(t) within the list (second term of the products) adjusted by the

di�erence in scores between the two positions (�rst term).

2.2 Kendall's tau distance

The Kendall's tau distance takes a di�erent approach at measuring the dis-

tance between two ordered lists. It utilizes pairs of elements from the union

of two lists and is de�ned

K(δ, Li) =
∑

t,u∈Li∪δ
Kp

tu,

where

Kp
tu =

0 if rδ(t) < rδ(u), rLi(t) < rLi(u) or rδ(t) > rδ(u), rLi(t) > rLi(u)

1 if rδ(t) > rδ(u), rLi(t) < rLi(u) or rδ(t) < rδ(u), rLi(t) > rLi(u)

p if rδ(t) = rδ(u) = k + 1 or rLi(t) = rLi(u) = k + 1.

Here, p ∈ [0, 1] is a parameter that needs to be speci�ed for Kendall's tau.

If p is set to 0, the maximum value that the distance can achieve is k2 and
this happens when the intersection of the two lists compared is an empty set.

Intuitively, Kendall's tau can be thought about in the following way. If the

two elements t and u have the same ordering in both lists, then no penalty is

incurred (a good scenario). If the element t precedes u in the �rst list and u
precedes t in the second list, then a penalty of 1 is imposed (a bad scenario).

A case when both t and u do not appear in either one of the lists (their ranks

are k + 1) can be handled by selecting p on a spectrum ranging from very

liberal (0) to very conservative (1). That is, if we have no knowledge of the

relative position of t and u in one of the lists, we have several choices in the

matter. We can either impose no penalty (0), full penalty (1), or a partial

penalty (0 < p < 1). The following three choices are common: 0, 1, and 0.5.

It is a matter of a philosophical taste as to which option one chooses. We

use p = 0 in the internal Kendall function of the package.

Somewhat analogously to the Weighted Spearman distance, the Weighted

Kendall's tau is de�ned by

WK(δ, Li) =
∑

t,u∈Li∪δ
|M(rLi(t))−M(rLi(u))| ×Kp

tu,

in which the penalty imposed is adjusted by the absolute di�erence in the

scores for elements t and u. Here, Kp
tu is de�ned identically as above.

5

Normalization of scores from each list Li before computing WS and WK
is necessary. The weights must be comparable otherwise disproportionately

large or small weights can bene�t a particular list and pull the "optimal"

list δ∗ towards it. A number of normalization schemes that map the scores

from the real line to the interval [0, 1] were considered. Unfortunately, most
of them resulted in transformed scores occupying a very narrow portion of

the interval. We settled for a simple normalization which spread the scores

"evenly" between 0 and 1

M∗
i =

Mi −min(Mi)

max(Mi)−min(Mi)
, i = 1, . . . , n.

We would like to make one last comment on the reasons behind intro-

ducing weighted distance measures here. Quite obviously they are motivated

by the desire for a more e�cient use of the data, in this case, the numeri-

cal scores which underlie the rankings. But that is not their sole purpose.

When using the original Spearman and Kendall distances we noticed that in

many situations no clear winner exists as two or more ordered lists have the

same objective function score due to the discrete nature of the ranks. This

brought computational instability into the iterative aggregation process. The

algorithm would never converge but would simply oscillate between the two

"best" lists, understandably not knowing which one to pick. When contin-

uous weights are used to adjust the discrete ranks, the possibility of such

ties is almost eliminated and the algorithm is much more computationally

stable. In addition, we obtain a clear winner in an objective way.

3 Cross-Entropy Monte Carlo algorithm

Due to practical considerations and computational convenience, we represent

an ordered list as an (X)n×k random matrix whose entries are 0 or 1 with the

constraints of its columns summing up to 1 and its row summing to at most

1. Here, n is the total number of unique elements in all ordered lists to be

combined and k is usually the length of ordered lists (but can be smaller if

necessary). Under this setup, each realization of X, x, uniquely determines

an ordered list of size k by the position of 1's in each column from left to

right Lin et al. (2006). For example, if the full list was (A,B,C), a 3 × 3
matrix

x =

0 1 0
0 0 1
1 0 0

6

would translate into a candidate list of (C,A,B).
Having de�ned X as a matrix of size n × k with the two constraints

regarding the sums of columns and rows, we thereby de�ne the space of

solutions, X, to our minimization problem. It is of interest to �nd the min-

imum of the objective function Φ over X and the corresponding x at which

that minimum is attained.

Assume that X comes from a pmf P (x) that is indexed by the parameter
matrix (v)n×k = ((pjr)). More precisely, we assume that the joint distribu-

tion Pv(X = x) satisfying the above two constraints is given by

Pv(x) ∝
n∏

j=1

k∏
r=1

(pjr)
xjr

×I

 k∑
r=1

xjr ≤ 1, 1 ≤ j ≤ n;

n∑
j=1

xjr = 1, 1 ≤ r ≤ k

The CE algorithm proceeds in the following fashion:

1. Initialization: Set t = 0. Set the initial parameter matrix v0 of the

random distribution of X to constant values; i.e., let each p0jr = 1/n.
Thus, at this stage, each of the n unique elements has equal chances

of being included in the overall lists of size k for which the objective

function Φ will be evaluated. This default behavior can be overrid-

den by specifying the initial probability matrix v1 in the RankAggreg

function.

2. Sampling: At each iteration t, draw a sample of size N from Pvt(x).
Find the corresponding top-k lists δi's and the values of the objective

function Φ(δi). Sort the Φ(δi)'s in ascending order and �nd a ρ-quantile
yt = Φ([ρN]), where [a], for any real number a, is the integer part of a.

3. Updating: Update the parameter vector as follows

p
(t+1)
jr = (1− w)ptjr + w

∑N
i=1 I(Φ(δi) ≤ yt)xijr∑N

i=1 I(Φ(δi) ≤ yt)
,

where xijr is the value at the jr
th position of the ith sample and w is a

weight parameter introduced to avoid convergence to a local maxima

(speci�ed by the weight argument with the default value of .25).

4. Convergence: The algorithm is stopped if the optimal list does not

change in a user-speci�ed number of iterations. The default value is 7

for the CE algorithm and it is speci�ed by the convIn argument.

7

The CE algorithm requires users to set a number of parameters. Conver-

gence to a global optimal solution in many ways depends on the parameters

chosen. It is recommended that the number of samples N is to be set to at

least 10k2 (in case, n >> k, 10kn) and the rarity parameter ρ is to be set to
0.01 if N is relatively large or 0.1 if N is small (less than 100).

4 Genetic algorithm

Genetic algorithms are another set of tools suitable for solving complex com-

binatorial problems Goldenberg (1989). Their main advantage is their inher-

ent simplicity in both conceptual understanding and software implementa-

tion. In our experience, the GA perform reasonably well for the aggregation

problem but one has to be careful with the selection of important parameters

de�ning the rate at which the learning proceeds.

As implemented in this package, the GA has the following steps:

1. Initialization: Randomly select popSize ordered lists of size k which

form the initial population of possible solutions to our optimization

problem. The population size popSize is important and, obviously, the

larger the population size, the better chance of it containing, at some

point, the optimal solution. It should ideally be a function of k and

the number of unique elements in the original ordered lists Li, but

computational feasibility has to be considered here.

2. Selection: Depending on which distance is used, compute the objec-

tive function for each member of the population. Then randomly select

current members for the next generation using weighted random sam-

pling where the weights are determined by the member's �tness (the

objective function score).

3. Cross-over: The selected members are then crossed-over with the

probability of CP (the cross-over probability), i.e. two random ordered

lists can swap their tails which start at a random position with the CP

probability. Only 1-point cross-overs are allowed.

4. Mutation: Crossing-over will allow only for the mixing of ordered lists

but a rather drastic event is required to bring radically new solutions to

the population pool. These are introduced by mutations which happen

with the probability of MP (mutation probability). Thus, any list in

the pool can randomly change one or more of its elements.

8

5. Convergence: The algorithm is stopped if the "optimal" list remains

optimal for convIn consecutive generations (default is 30). To ensure

that the algorithm stops running eventually, the maximum number of

generations can be set in advance which will terminate the execution

regardless of the �rst condition being true. If neither the maximum

number of iterations has been reached nor the "optimal" list stayed

untouched during the last convIn generations, continue to step Selec-

tion.

As was mentioned previously, the choice of the parameters popSize, CP,

and MP is crucial for the success of the GA. If one is too conservative

and selects small CP and MP probabilities, the GA will have a hard time

exploring the space of possible solutions in a reasonable time, particularly,

when the space is extremely large. On the other hand, choosing large values

for CP and MP will results in a "haste" decision, perhaps getting stuck in

a local minimum without a chance to explore the whole search space.

5 Examples of rank aggregation

We present two rank di�erent rank aggregation problems, one in the context

of unsupervised learning where there is an intrinsic di�culty of choosing the

best clustering algorithm for a particular problem, and the other one in the

context of meta-analysis of di�erent microarray cancer studies where the goal

is to determine the combined set of genes indicative of cancer status.

To start using the RankAggreg package, it must be loaded into R with the

regular library() function. Package documentation, examples, and additional

information are available through help() and vignette() functions.

> library(RankAggreg)

> help(package="RankAggreg")

> vignette("RankAggreg")

5.1 Aggregation of clustering validation measures

Rank aggregation in the clustering context was introduced by Pihur et al.

(2007). Numerous clustering algorithms are available in R and other statisti-

cal and data mining software packages, each one having its relative strength

and weaknesses in terms of how successfully they can handle certain types of

data. Thus, it is often di�cult to select the "best" algorithm for a particular

9

clustering task. Validation (performance) measures come to rescue to some

extent and o�er an objective way of ranking clustering algorithms according

to their assessment of what a "good" clustering result is. If k clustering

algorithms are validated with m validation measures, m ordered lists of size

k are produced as a result. Even though desirable, the order of clustering

algorithms within each list is rarely the same. Rank aggregation is helpful

in reconciling the ranks and producing the "super"-list which determines

the overall winner and also ranks all clustering algorithms based on their

performance as determined by all m validation measures simultaneously.

Clustering validation is implemented in the clValid package Brock et al.

(2007). After loading the package, we bring in a mouse microarray dataset

available and select the �rst 100 genes from it. Assuming that those 100

genes form 5 natural clusters (this is a big assumption but it is not es-

sential for the rank aggregation demonstration), we evaluate 10 clustering

algorithms with 6 validation measures. Available clustering algorithms are:

SOTA (ST), FANNY (FN), K-Means(KM), PAM(PM), Hierarchical(HR),

Agnes(AG), CLARA(CL), Diana(DI), and Model-based(MO). Further de-

tails can be obtained from the clValid package documentation.

> options(warn = -1)

> library(clValid)

> library(mclust)

> library(kohonen)

> data(mouse)

> express <- mouse[1:100,c("M1","M2","M3","NC1","NC2","NC3")]

> rownames(express) <- mouse$ID[1:100]

> set.seed(100)

> result <- clValid(express, 5,

+ clMethods=c("hierarchical","fanny","model", "kmeans","sota","pam","clara",

+ "agnes", "diana"), validation=c("internal","stability"))

The result object contains a 7 × 9 matrix of scores which measure the

performance of the algorithms. For each validation measure, 9 clustering

algorithms can now be ranked based on these scores which are sorted either in

ascending or descending order depending on whether larger or smaller scores

correspond to better performance under the measure. Here, the Dunn index

and the Silhouette Width measure give higher scores with better performance

and for the other measures the smaller scores are desirable.

This is how the 7 ordered lists of 9 algorithms look like.

1 2 3 4 5 6 7 8 9

10

APN MO FN ST KM PM HR AG CL DI

AD FN KM PM CL ST DI HR AG MO

ADM FN ST MO KM CL PM DI HR AG

FOM CL KM PM FN ST DI HR AG MO

Connectivity HR AG DI KM FN CL PM MO ST

Dunn HR AG KM PM DI CL FN ST MO

Silhouette HR AG KM CL PM ST DI FN MO

The underlying validation measures' scores are given below.

1 2 3 4 5 6 7 8 9

APN MO FN ST KM PM HR AG CL DI

AD FN KM PM CL ST DI HR AG MO

ADM FN ST MO KM CL PM DI HR AG

FOM CL KM PM FN ST DI HR AG MO

Connectivity HR AG DI KM FN CL PM MO ST

Dunn HR AG KM PM DI CL FN ST MO

Silhouette HR AG KM CL PM ST DI FN MO

We can see that K-Means and Hierarchical clustering are performing

quite well. Since the number of possible solutions is not that large in this case

(k! = 9! = 362, 880), it is feasible to use the brute force approach to �nd the

optimal solution. This can be done using the BruteAggreg function provided

in the package. Please note that even for this relatively small problem it

takes hours to perform the necessary computations. The approach is limited

to toy examples only and should not be attempted if k is larger than 10.

> BruteAggreg(res$ranks, 9, res$weights, "Spearman")

The best overall list as determine by trying all possible solutions with the

weighted Spearman footrule distance is KM HR AG FN PM CL DI ST MO

with the minimum objective function score of 6.378781. As expected, Hierar-

chical clustering and the K-Means algorithm are the top two performers. We

will now see if the CE algorithm can quickly discover the solution without

resorting to an exhaustive search.

> (CEWS <- RankAggreg(res$ranks, 9, res$weights, seed=123))

The optimal list is:

SM HR KM FN AG PM CL DI ST MO

11

Algorithm: CE

Distance: Spearman

Score: 5.552256

We get exactly the same solution in only 22 iterations and in about 40

seconds by examining mere 13000 potential candidates.

To get a visual representation of the results, a convenient plot function

is provided. It takes the object returned by the RankAggreg function as its

�rst argument and outputs three side-by-side plots with useful information

on the convergence properties and the �nal ranking.

Weighted Kendall's tau distance can also be used, though it is much more

expensive to compute. If the verbose argument of the RankAggreg function

is set to TRUE (it is by default), R console window outputs information at

each iteration to keep the user updated. In addition, a plot similar to Figure

1 is shown and updated at each iteration to monitor convergence.

> (CEWK <- RankAggreg(res$ranks, 9, res$weights, "CE", "Kendall", seed=123, verbose=FALSE))

The optimal list is:

KM SM PM FN HR AG CL DI ST MO

Algorithm: CE

Distance: Kendall

Score: 1.241372

This time K-means is still ahead, while the Hierarchical clusters got

pushed down to number 4.

The Genetic Algorithm can also be used with both the weighted Spear-

man and Kendall distances. Unfortunately, it seems to lack the monotonicity

property that the CE algorithm exhibits to some extent. This can be seen in

the �rst plot of Figure 2. Due to that fact, the convergence criteria needs to

be stricter to avoid sporadic local solutions. The default value for the convIn

arguments for the GA is 30.

> (GAWS <- RankAggreg(res$ranks, 9, res$weights, "GA", "Spearman",seed=123, verbose=FALSE))

The optimal list is:

SM HR KM FN AG PM CL DI ST MO

Algorithm: GA

Distance: Spearman

Score: 5.552256

12

> plot(CEWS)

2 4 6 8 10 12

5.
6

5.
8

6.
0

6.
2

Minimum Path

Iteration

S
co

re
s

min = 5.552

Final Sample Distribution

Objective function scores

F
re

qu
en

cy
5.6 5.8 6.0 6.2 6.4

0
20

0
40

0

0
2

4
6

8
12

Rank Aggregation

Optimal List: SM HR KM FN AG PM CL DI ST MO

R
an

ks

SM HR KM FN AG PM CL DI ST MO

Data CE Mean

Figure 1: Visual Representation of the aggregation results through the plot()

function. The �rst plot in the top row shows the path of minimum values

of the objective function over time. The global minimum is shown in the

top right corner. The histogram of the objective function scores at the last

iteration is displayed in the second plot. Looking at these two plots, one

can get a general idea about the rate of convergence and the distribution

of candidate lists at the last iteration. The third plot at the bottom shows

the individual lists and the obtained solution along with optional average

ranking.

13

> (GAWK <- RankAggreg(res$ranks, 9, res$weights, "GA", "Kendall",seed=123, verbose=FALSE))

The optimal list is:

KM SM PM FN HR AG CL DI ST MO

Algorithm: GA

Distance: Kendall

Score: 1.241372

Both results agree with the ones obtained using the CE algorithm. Be-

sides the jaggedness of the minimum path in the �rst plot, it is easy to

notice that the GA algorithm takes signi�cantly larger amount of cycles to

converge. Even given that, the population distribution of the last generation

is much more heterogeneous than that of the CE.

5.2 Meta-analysis of microarray experiments

Microarray cancer studies often attempt to identify genes related to a speci�c

cancer. Their most common output is a list of genes ordered by correspond-

ing p-values. Di�erent studies, even the ones analyzing the same cancer

type (for example, lung cancer), almost never produce identical gene lists.

Meta-analysis of multiple microarray studies is di�cult, especially if di�erent

experimental platforms have been used. Rank aggregation, however, avoids

the issue of multiple experimental conditions by dealing with the �nal prod-

uct: the ordered list of genes.

Recently, we have carried out the meta-analysis of 20 microarray studies

on multiple cancers using the proposed rank aggregation algorithms Pihur

et al. (2008). Our goal was to identify genes which would be important in

development of multiple cancers. Further details on the rank aggregation

details can be found in the original article.

Here, we present a smaller example described by DeConde et al. (2006)

who used three di�erent Monte Carlo algorithms for rank aggregation of 5

prostate cancer microarray datasets. Two experiments were conducted using

the A�ymetrix chip technology and the other three studies used custom

cDNA chips. Each individual study tried to identify genes which are either

up or down-regulated in prostate cancer patients, coming up with ordered

lists of upregualated genes shown in Table 1 (the lists appear in Table 4 in

DeConde et al. (2006)).

> data(geneLists)

14

> plot(GAWS)

0 100 300 500

5.
5

6.
0

6.
5

7.
0

Minimum Path

Iteration

S
co

re
s

min = 5.552

Final Sample Distribution

Objective function scores

F
re

qu
en

cy

6 7 8 9 10 11 12

0
2

4
6

8
10

0
2

4
6

8
12

Rank Aggregation

Optimal List: SM HR KM FN AG PM CL DI ST MO

R
an

ks

SM HR KM FN AG PM CL DI ST MO

Data GA Mean

Figure 2: Visual representation of rank aggregation using the GA algorithm

with the Weighted Spearman distance.

15

Luo Welsh Dhana True Singh

1 HPN HPN OGT AMACR HPN

2 AMACR AMACR AMACR HPN SLC25A6

3 CYP1B1 0ACT2 FASN NME2 EEF2

4 ATF5 GDF15 HPN CBX3 SAT

5 BRCA1 FASN UAP1 GDF15 NME2

6 LGALS3 ANK3 GUCY1A3 MTHFD2 LDHA

7 MYC KRT18 0ACT2 MRPL3 CANX

8 PCDHGC3 UAP1 SLC19A1 SLC25A6 NACA

9 WT1 GRP58 KRT18 NME1 FASN

10 TFF3 PPIB EEF2 COX6C SND1

11 MARCKS KRT7 STRA13 JTV1 KRT18

12 OS-9 NME1 ALCAM CCNG2 RPL15

13 CCND2 STRA13 GDF15 AP3S1 TNFSF10

14 NME1 DAPK1 NME1 EEF2 SERP1

15 DYRK1A TMEM4 CALR RAN GRP58

16 TRAP1 CANX SND1 PRKACA ALCAM

17 FM05 TRA1 STAT6 RAD23B GDF15

18 ZHX2 PRSS8 TCEB3 PSAP TMEM4

19 RPL36AL ENTPD6 EIF4A1 CCT2 CCT2

20 ITPR3 PPP1CA LMAN1 G3BP SLC39A6

21 GCSH ACADSB MAOA EPRS RPL5

22 DDB2 PTPLB ATP6V0B CKAP1 RPS13

23 TFCP2 TMEM23 PPIB LIG3 MTHFD2

24 TRAM1 MRPL3 FM05 SNX4 G3BP2

25 YTHDF3 SLC19A1 SLC7A5 NSMAF UAP1

Table 1: Top-25 upregulated genes from 5 prostate microarray experiments.

There are 89 unique genes in all 5 gene lists. The only gene that appears

in all of them is HPN, while genes AMACR, GDF15, and NME1 appear in

4 lists. 66 genes appear in just one list. The goal of rank aggregation is to

combine these lists into the overall top-25 gene list which hopefully would

be more accurate than any individual list by itself.

Since no p-values are reported, we will use the regular Spearman distance

for both the CE and the GA algorithms.

> top25CE <- RankAggreg(geneLists, 25, seed=100, rho=.01)

The optimal list is:

HPN AMACR GDF15 FASN NME2 UAP1 SLC25A6 0ACT2 KRT18 NME1

16

EEF2 STRA13 GRP58 CANX SND1 ALCAM MRPL3 TMEM4 CCT2

SLC19A1 PPIB FM05 ENTPD6 KRT7

Algorithm: CE

Distance: Spearman

Score: 319.6

The CE algorithm converges in 38 iterations with the minimum of 319.6.

The overall list is perhaps not surprising, putting HPN in the �rst place,

followed closely by the two other genes that appear in four lists. Using the

GA algorithm we get the similar results.

In case when there would be an indication that some microarray stud-

ies are more reliable than others, we could set the importance parameter

available in the RankAggreg function to re�ect these beliefs. By default, it

assigns equal weights to all ordered lists, but one, for example, could set

importance=c(1,2,1,1,2) placing stronger emphasis on the A�ymetrix arrays

which are considered to have higher sensitivity rates.

> top25CEw <- RankAggreg(geneLists, 25, seed=100, importance=c(1,2,1,1,2), rho=.01)

The optimal list is:

HPN AMACR 0ACT2 GDF15 FASN NME2 KRT18 SLC25A6 EEF2 UAP1

CANX NME1 GRP58 SND1 STRA13 TMEM4 ALCAM PPIB NACA CCT2

RPL5 SLC39A6 MTHFD2 MRPL3 SLC19A1

Algorithm: CE

Distance: Spearman

Score: 295.4286

This produces the combined list which is slightly di�erent from the one

obtained treating all �ve studies equally. The objective function score here

is 295.43, being a little smaller than 319.6. Clearly, OACT2 is ranked higher

now (3rd) due to being at the top (also 3rd) in the Welsh study which received

more weight. Similarly, the KRT18 gene moved up a couple spots due to

being present in both Welsh and Singh top lists which are both A�ymetrix.

The GA algorithm can also be applied. We increase the maximum num-

ber of iterations to allow for a longer evolution process. Increasing the convIn

(converge in) argument to 50 will assure that we do not stop the algorithm

too soon.

> top25GA <- RankAggreg(geneLists, 25, seed=100, method="GA", maxIter=3000, convIn=50)

17

The optimal list is:

HPN AMACR SLC25A6 FASN NME2 GDF15 0ACT2 UAP1 KRT18 EEF2

STRA13 NME1 MTHFD2 SND1 CANX GRP58 ALCAM TMEM4 PPIB CCT2

SLC19A1 CBX3 SAT FM05 SNX4

Algorithm: GA

Distance: Spearman

Score: 320.8

The algorithm did not converge (due to setting a rather stringent criteria)

and was stopped after 3000 generations. The �nal list had an objective

function score of 320.8 which is slightly worse than what we obtained using

the CE algorithm. These lists are almost identical in terms of which genes

where included in the top 25 (22 genes are the same), but they are somewhat

di�erent in the actual ordering. This should not come as a huge surprise,

taking into consideration the enormous solution space. Both of the obtained

lists are most likely very close to the true minimum solution.

6 Discussion

The RankAggreg package provides an easy and convenient interface to handle

complex rank aggregation problems. It provides the user with two choices

of methods for aggregation as well as two di�erent distance functions. The

brute force approach is also available for small-scale problems. A simple plot

function helps to visualize the rank aggregation problem and the obtained

solution.

We would like to stress that using either the CE or the GA algorithms

for large problems does not "guarantee" an optimal solution. Performance of

both of these algorithms is quite sensitive to the tuning parameters, in par-

ticular the sample size N for the CE algorithm and the cross-over (CP) and

mutation (MP) probabilities for the GA algorithm. The user is encouraged

to run the RankAggreg function several times. If di�erent optimal lists are

produced, increasing sample size is probably necessary. Tuning additional

parameters as discussed above may also prevent local minima traps. That

said, however, we are quite impressed by the ability of both algorithms, the

CE in particular, in discovering the optimal ordering of the elements in the

combined list.

18

References

G. N. Brock, V. Pihur, S. Datta, and S. Datta. clvalid, an r package for cluster
validation. Journal of Statistical Software, 25:4, 2007.

P. De Boer, D. Kroese, S. Mannor, and R. Rubinstein. A tutorial on the cross-
entropy method. Ann. Oper. Res., 134:19�67, 2005.

R. DeConde, S. Hawley, S. Falcon, N. Clegg, B. Knudsen, and R. Etzioni. Combin-
ing results of microarray experiments: a rank aggregation approach. Stat Appl

Genet Mol Biol, 5(1):Article15, 2006.

D. E. Goldenberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison Wesley, Reading: MA, 1989.

S. Lin, J. Ding, and J. Zhou. Rank aggregation of putative microrna targets with
cross-entropy monte carlo methods. (Preprint, presented at the IBC 2006 con-
ference, Montral), 2006.

V. Pihur, S. Datta, and S. Datta. Weighted rank aggregation of cluster validation
measures: a monte carlo cross-entropy approach. Bioinformatics, 23(13):1607�
15, 2007.

V. Pihur, S. Datta, and S. Datta. Finding cancer genes through meta-analysis
of microarray experiments: Rank aggregation via the cross entropy algorithm.
Genomics, (to appear), 2008.

R. Rubinstein. The cross-entropy method for combinatorial and continuous opti-
mization. Methodology and Computing in Applied Probability, 1:127�190, 1999.

19

	Introduction
	Rank aggregation as an optimization problem
	Spearman footrule distance
	Kendall's tau distance

	Cross-Entropy Monte Carlo algorithm
	Genetic algorithm
	Examples of rank aggregation
	Aggregation of clustering validation measures
	Meta-analysis of microarray experiments

	Discussion

